ATC Series: Technical Data

		ATC 125	ATC 160	ATC 250	ATC 300	ATC 350
Geometry						
Center height	mm	120	140	150	210	245
Diameter of faceplate small / large	mm	140 / 180	160 / 220	200 / 240	260 / 340	300 / 450
Rectangularity incl. tumbling error, max.	mm	0.02	0.02	0.02	0.02	0.02
Diameter of center bore	mm	64 H7	64 H7	64 H7	64 H7	64 H7
Radial run-out of center bore, max.	mm	0.01	0.01	0.01	0.01	0.01
Center through hole / max. possible	mm	22 / 42	22 / 42	22 / 45	22 / 45	22 / 54
Bearing, drive, clamping						
Diameter of bearing	mm	115 x 90	146 x 80	179 x 120	230 x 155	280 x 185
Tilting torque, max.	Nm	400	1,000	2,700	3,200	5,500
Axial load, max.	N	2,400	4,500	9,000	17,000	27,000
Transport load, max.	kg	120	160	300	400	600
Transport load with counter bearing, max.	kg	240	320	600	800	1,200
Diameter of worm wheel	mm	96	120	157	230	274
Indexing accuracy of worm gear	п	+/- 16	+/- 11	+/- 11	+/- 10	+/- 7
Ratio of worm gear	./.	36:1	60:1	60:1	72:1	72:1
Speed of faceplate, max.	rpm	166	100	64	50	42
Transmittable torque of worm gear, max.	Nm	100	215	460	1,280	2,100
Mass moment of inertia, max.	kgm²	0.6	1.5	7.5	20	25
Type of clamping		pneu. / hydr.	pneu. / hydr.	pneu./hydr.	pneu. / hydr.	pneu./hydr.
Required pressure for clamping	bar	6/90	6/90	6/90	6/90	6/90
Clamping torque, max.	Nm	600	1,000	1,600	2,500	4,000
Net weight, approx. (min. / max.)	kg	33 / 41	40 / 48	62 / 71	130 / 140	201 / 236

The ATC series: Our modular upgrade solution.

Peiseler offers various modular upgrade solutions under the ATC series. These NC sub-assemblies are characterized by their state-of-the-art design and attractive price. The basis for the development was the optimization of the drive train, the harmonization of the sizes and the use of the same design principles for the components - for maximum efficient use of the installation space.

We have summarized the most important technical data for our most common sizes on this data sheet so that you can find the right solution for your machine at a glance.

The maximum possible workpiece dimensions

The workpieces shown here are based on center-loaded solid shafts with the largest possible diameter and are just one example of the many possibilities.

